Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants.
نویسندگان
چکیده
Emission of methyl benzoate, one of the most abundant scent compounds of bee-pollinated snapdragon flowers, occurs in a rhythmic manner, with maximum emission during the day, and coincides with the foraging activity of bumblebees. Rhythmic emission of methyl benzoate displays a "free-running" cycle in the absence of environmental cues (in continuous dark or continuous light), indicating the circadian nature of diurnal rhythmicity. Methyl benzoate is produced in upper and lower snapdragon petal lobes by enzymatic methylation of benzoic acid in the reaction catalyzed by S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase (BAMT). When a detailed time-course analysis of BAMT activity in upper and lower petal lobes during a 48-hr period was performed, high BAMT activity was found at night as well as in continuous darkness, indicating that the BAMT activity is not an oscillation-determining factor. Analysis of the level of benzoic acid during a 24-hr period revealed oscillations in the amount of benzoic acid during the daily light/dark cycle that were retained in continuous darkness. These data clearly show that the total amount of substrate (benzoic acid) in the cell is involved in the regulation of the rhythmic emission of methyl benzoate. Our results also suggest that similar molecular mechanisms are involved in the regulation of methyl benzoate production in diurnally (snapdragon) and nocturnally (tobacco and petunia) emitting plants.
منابع مشابه
Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers.
In snapdragon flowers, the volatile ester methyl benzoate is the most abundant scent compound. It is synthesized by and emitted from only the upper and lower lobes of petals, where pollinators (bumblebees) come in contact with the flower. Emission of methyl benzoate occurs in a rhythmic manner, with maximum emission during the day, which correlates with pollinator activity. A novel S-adenosyl-l...
متن کاملQuantum mechanical study of electronic and structural properties of methyl benzoate in interaction with boron nitride (BN) nanotube
To determine the non-bonded interaction between methyl benzoate and boron nitridenanotube, we focused on an armchair single-wall boron nitride nanotube (9,9) With length 5 angstroms.The geometry of molecules was optimized using B3LYP method with 6-31g* basis set. Also reactivityand stability of methyl benzoate and boron nitride nanotube (9,9) was checked. Then NBO, FREQ,...
متن کاملTissue-specific PhBPBT expression is differentially regulated in response to endogenous ethylene.
Ethylene is a gaseous plant hormone involved in many physiological processes including senescence, fruit ripening, and defence. Here the effects of pollination and wound-induced ethylene signals on transcript accumulation of benzoyl CoA:benzyl alcohol/phenylethanol benzoyltransferase (PhBPBT) are shown in Petuniaxhybrida cv. Mitchell 'Diploid' (MD). In petunia, PhBPBT is responsible for the bio...
متن کاملCircadian rhythms of isoprene biosynthesis in grey poplar leaves.
Isoprene (2-methyl-1,3-butadiene) emission varies diurnally in different species. In poplar (Populus spp.), it has recently been shown that the gene encoding the synthesizing enzyme for isoprene, isoprene synthase (ISPS), displays diurnal variation in expression. Working on shoot cultures of Grey poplar (Populus x canescens) placed under a different light regime in phytochambers, we showed that...
متن کاملBiosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice.
Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, Os...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2001